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Existence and stability of discrete gap breathers in a diatomicb Fermi-Pasta-Ulam chain
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We study the existence and stability of discrete breathers in a chain consisting of alternating light and heavy
particles, with nearest-neighbor coupling containing quartic soft or hard anharmonicity. This study is focused
on breathers with frequency in the gap that separates the acoustic and optical bands of the phonon spectrum.
Simple analytical and physical results obtained through explicit solutions of algebraic equations demonstrate
the possibility of the existence of gap breathers with both types of symmetry, i.e., symmetric and antisymmet-
ric. The specific pattern depends on the type of anharmonicity present, i.e., soft or hard, and whether the center
of the breather is on a light or a heavy particle. These analytical results are verified systematically through the
use of a numerically exact procedure from the anticontinuous limit.
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I. INTRODUCTION

Intrinsic localized modes ordiscrete breathers~DBs!
@1–4# are nonlinear collective excitations that seem to pla
very important role in condensed matter physics and e
possibly in biology. Interest in these modes has been in
sified recently due to their experimental generation and
servation in chemical compounds@5#, antiferromagnets@6#,
coupled arrays of Josephson junctions@7,8#, and myoglobin
@9#. The existence of DBs can affect essentially the phys
properties of a system. Thus, as shown in Refs.@10,11#, such
localized vibrations are responsible for the nonexponen
thermal relaxation in nonlinear lattices and therefore they
expected to contribute to the thermodynamical behavior
the system. Another physical problem, where DBs are
volved, is the energy exchange between different parts
large and complicated system. As shown by Chenet al. @12#,
under certain conditions DBs can be mobile~if they are ex-
cited appropriately! and therefore they can become ener
carriers. An important property of the discrete breathers
the so-called targeted energy transfer@13#, which means that
under some conditions, a very selective vibrational ene
transfer between DBs from one part of the system to ano
one can occur. Therefore, in order to understand better
importance of DBs for physical problems, it is necessary
study their fundamental properties such as their existe
and stability for systems with more sophisticated~realistic!
spatial symmetry and structure.

The present paper is focused on nonlineardiatomic lat-
tices. Its purpose and contents are motivated as follows.
ing the most simplenonlineargeneralization of the standar
one-dimensional~1D! monoatomic lattice with an inter-
atomic harmonic interaction, the so-calledb Fermi-Pasta-
Ulam ~FPU! chain that includes aquartic anharmonicity is a
convential theoretioncal model to describe the appearanc
DBs in lattices due to discreteness and anharmonicity.
regards the symmetry of the displacements of the chain
oms from their equilibria, their profile~of the amplitudes of
localized oscillations! has been shown to be either symmet
1063-651X/2003/67~4!/046612~13!/$20.00 67 0466
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~Sievers-Takeno mode@3#! or antisymmetric~Page mode
@4#!, with frequencies of oscillations shiftedabovethe linear
~phonon! band. A resemblance between the DBs of this ty
and the well known impurity modes can be described
using simple analytical calculations. The main qualitative
sult of such an analysis is the existence of DBs in the mo
atomicb-FPU chain under the condition that the quartic a
harmonicity is hard, i.e., the fourth-order expansio
coefficientb in the interatomic interaction must be positiv
if in addition the breather’s higher harmonics do not reson
with frequencies from the band~a nonresonance conditio
@1#!.

Similarly, it would be instructive to study intrinsic local
ized modes in a nonlinear diatomic lattice. In this paper,
consider the simplest version of the nonlinear diatomic ch
that contains only nearest-neighbor interactions with a qu
tic ~soft or hard! anharmonicity. Correspondingly, this 1D
lattice can be called a diatomicb-FPU chain. The linear
spectrum of this lattice consists of two finite bands, outs
which stable DBs are expected to exist if again the nonre
nance condition is fulfilled. Here we study only the breath
with frequency inside the gap separating the acoustic
optical bands. In what follows, these nonlinear localiz
modes are referred to asdiscrete gap breathers~DGBs!.

Despite a number of disseminated publications being
voted to the existence and dynamical properties of
breathers asstrongly localized excitations in diatomic chain
@14–23#!, including also extended~moving! gap solitons
@24–33#, the problem of their existence and stability is n
yet fully solved. In this context, Ref.@21# should be men-
tioned, where the DBs were investigated rigorously. Ho
ever, this paper is mainly focused on the interesting bifur
tion behavior of the DBs with frequency above the optic
band. It should be noticed here that in order to perform
continuation of a breather solution from the anticontinuo
~AC! limit in a diatomic FPU lattice, it is necessary som
how to decouple the system of nonlinearly coupled osci
tors. One way to accomplish this procedure is the ‘‘freezin
of heavy massesM ~the mass of light particlesm51), taking
©2003 The American Physical Society12-1
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the limit «5M 21/2→0 @19,21#. In this case, a diatomic chai
is continuously transformed into a monoatomic one. Bel
we develop another approach, which is based on an ap
priate transformation of our realistic system to a fictitio
lattice with its particles placedin situ. In other words, the
equations of motion are modified to contain acontinuous
parameter, sayl (0<l<1), such that in the limitl→0, the
lattice becomes as a system of completely decoupled no
ear oscillators, whereas in the opposite limitl→1, the equa-
tions of motion recover their realistic~original! form. Here
the AC limit corresponds tol→0, when the intersite cou
pling in the system is completely transformed into a fictitio
on-site potential.

The present paper aims at systematically studying the
breather modes with all possible symmetries for both s
and hard quartic anharmonicities. In general, from symme
arguments for each kind of anharmonicity~soft or hard!, four
possible localized solutions: centered at a light or a he
particle with symmetric@3# or antisymmetric@4# profile may
be assumed to exist. The current studies in this direc
have at their disposal a powerful tool such as the MacK
Aubry theorem @34,35# dealing with the existence an
uniqueness of DBs. The numerical implementation of t
theorem has recently been developed by Marı´n and Aubry
@36#, including the linear stability analysis by studying a co
responding Floquet operator. Owing to this significa
progress, it is reasonable now to simplify the available a
lytical results concerning the breather existence~including
also the previous results obtained by Aoki, Takeno, and S
ers @14#, Chubykalo and Kivshar@15#, and others! as much
as possible, in order to get the DGB solutions in a form
closed expressions of archetypal simplicity. Therefore, us
extensively symmetry arguments, here we develop a pe
trian approach. More precisely, in addition to the well know
rotating wave approximation~RWA!, we also introduce a
local anharmonicity approximation~LAA !, where the nonlin-
earity in the nearest-neighbor coupling is involved only
the central one~symmetric pattern! or two ~antisymmetric
pattern! particles of a breather profile, while the rest partic
of the chain are assumed to oscillate with small amplitu
~with the harmonic approximation being applied!. The LAA
is reasonable, because the discrete breathers’ dynamic
similar to those of impurity modes@37#. In this way, we are
able to extract simplified nonlinear algebraic equations,
ing at the same simple level as the standard linear theor
a diatomic lattice, and at the same time giving an insight i
the existence of DGBs. Thus, from our simple analysis, o
can immediately show that for each type of anharmonic
~soft or hard! only two, instead offour DGB solutions, are
available and find at which~light or heavy! particle their
profile can be centered.

Finally, it is very important to indicate those realistic sy
tems, wherestableDGBs could exist. In this context, ne
works of hydrogen~H! bonds seem to be the most approp
ate systems because their dynamics are basically gove
both by nonlinearity, i.e., anharmonicity of interparticle i
teractions and by ‘‘diatomicity’’ of hydrogen bonding, i.e
the presence of two coupled species in the lattice: heavy
and protons. More specifically, the hydrogen bonding occ
04661
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between a proton donor groupA–H and a proton accepto
group B, forming a hydrogen-bonded~HB! bridge
A–H•••B @38#. Long chains of these bridges, lik
•••X–H•••X–H•••X–H•••, where X5A or B @39#, are
ubiquitous in soft matter; in addition to being formed in w
ter and ice@40#, they form the basic means of creating thre
dimensional structures in biopolymers@41#. The typical
structure of the H bond between adjacent ionsX ~e.g., oxy-
gens! is that of a double well. In some cases, when the ty
cal excitation energies are much higher or the interion d
tance is small, e.g., due to exogenous factors such
pressure, the H bond becomes symmetric and acquire
single well. However, in spite of the structure of realistic H
complexes being too complicated, asoft anharmonicity is
always present in the H bond, resulting in the well-know
experimental observation of decreasing theX–H stretching
frequency@38#. It is thus very important to investigate tho
oughly the conditions of nonlinear localization of vibration
with all possible symmetries and for all possible types
anharmonicity~soft and hard! and compare then these find
ings with the experiments on the redshift of theX–H fre-
quency. Thus, the first question that immediately arises
whether or not a soft anharmonicity in theb-FPU model
indeed results in only softening theX–H vibrations. In other
words, it should be proven rigorously, using modern ma
ematical tools on the breather’s stability, whether there e
dynamically stable localized oscillations, which bifurca
down into the frequency gap beginning from the optic
band, and if this occurs, to indicate what symmetry of t
oscillations is responsible for this frequency shift. The ne
interesting question is to examine whether or not the~nonre-
alistic! hard anharmonicity can participate in softening t
X–H stretching vibrations. As a result of such a theoreti
analysis, one can finally assert with certainty that onlyone
from the four possible DGB’s modes ‘‘survives.’’ Its local
ized oscillations are proven to be symmetric and centere
a light particle~proton! in the middle of anX•••X bridge.

It should also be noticed that the hydrogen bonding
structurally directional and therefore except for translatio
motions of HB protons there are also rotations of theX–H
bonds. Therefore, similarly to the existence of two types
topological solitons, i.e., extendedionic and bonding~Bjer-
rum! defects@42#, which are related to the translational an
rotational motions, respectively, two types of DBs can
distinguished in HB networks. Here we are dealing with t
translational degrees of freedom in the HB chain. The ex
tence and stability of orientational DBs in a HB chain h
recently been studied by Khalack and Velgakis@43#, using
the AC approach.

The paper is organized as follows. In Sec. II, we introdu
the model and governing equations of motion adapted for
studies, using a continuation from the anticontinuous lim
The phonon spectrum and the relation between the loca
tion length and the gap frequency for exponentially decay
breather solutions are presented in Sec. III. The next sec
is devoted to an analytical analysis of all possible DGB
lutions, using both the approximations: LAA and RWA.
Sec. V, we omit both the approximations and study the D
solutions for the diatomicb-FPU chain, using a continuatio
2-2
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from the AC limit. Finally, in Sec. VI, we draw conclusion
and make an outlook.

II. MODIFIED EQUATIONS OF MOTION
WITH A FICTITIOUS ON-SITE POTENTIAL

The system we study is a diatomic FPU chain with
symmetric interparticle coupling. More precisely, it is su
posed that in each unit cell there exists a heavy atom~e.g., an
oxygen atom with massM516) and a light atom~e.g., a
hydrogen atom with massm51). Each atom is considere
to interact only with its nearest neighbors through an anh
monic potentialW(r ), wherer is the relative displacemen
between adjacent heavy and light atoms in the chain.
consider two qualitatively different potentialsW(r ), one be-
ing soft, while the other being hard.

For numerical calculations of breather states, it is ess
tial to introduce in our system the AC limit. To this end, th
nonlinear intersite potentialW(r ) is multiplied by a param-
eterl, whereas each chain particle is subject to anadditional
on-site potentialmultiplied by some other parameterh.
Then the AC limit is obtained ifl50 andh51, while the
original system we want to study corresponds tol51 and
h50. The continuation from the trivial solution found in th
AC limit can be implemented along any path in the tw
parameter set (l,h)P@0,1#3@0,1# that connects the point
~1,0! and ~0,1!. The Hamiltonian of such a modified syste
takes the form

H5(
n

F1

2
MQ̇n

21
1

2
mq̇n

21lW~Qn2qn!1lW~qn2Qn11!

1hW~Qn!1hW~qn!G , ~1!

where the summation is over all the unit cells of the latt
andQn andqn are the displacements of the heavy and lig
atoms in thenth cell of the chain from their equilibria, re
spectively. These displacements are labeled according to
sequence $ . . . ,Qn21 ,qn21 ,Qn ,qn ,Qn11 ,qn11 , . . . %. In
fact, onlyoneparameter, the mass ratioM /m is characteristic
for the dynamics. Nevertheless, throughout this paper
keep the symmetric notations for the masses, i.e.,M andm.
In numerical simulations, we will fixm51. For simplicity of
analytical calculations, we restrict ourselves in this pape
the symmetric potentialW(r ), namely,

W~r !5
1

2
r 21

b

4
r 4, ~2!

where the anharmonicity parameterb may be either positive
~hard anharmonicity! or negative~soft anharmonicity!.

In the simplest case, one can choose in the paramete
@0,1#3@0,1# the straight lineh512l, so that the modified
equations of motion that correspond to the Hamiltonian~1!
become

MQ̈n5l@W8~qn2Qn!2W8~Qn2qn21!#2~12l!W8~Qn!,
04661
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mq̈n5l@W8~Qn112qn!2W8~qn2Qn!#2~12l!W8~qn!.
~3!

These equations describe the diatomic FPU chain in the
limit if l→0, whereas the original form of the system
obtained in the limitl→1.

III. DISPERSION LAWS FOR PHONONS
AND DISCRETE BREATHERS

The phonon dispersion relation of a nonlinear lattice c
be found if the corresponding equations of motion are line
ized. Since we deal with a diatomic chain, the phonon sp
trum of such a system, which can be calculated analytica
consists in general of two bands: the acoustic one with
frequencies lying betweenv1 and v2, and the optical one
with the frequencies lying betweenv3 and v4, so that the
edge frequencies for these bands are arranged as 0<v1
,v2,v3,v4. We callv2 andv3 the lower and the uppe
edges of the phonon band gap, respectively. In the case i
diatomic chain is isolated from any substrate~on-site! poten-
tial, v150.

A necessary condition for the breather to exist is to av
resonances with the phonons, meaning that the breather
quency and all its higher harmonics must lie outside the p
non bands. A continuation of the breather from the AC lim
can be performed only if in every continuation step, t
breather frequency fulfills this condition. To find a valid co
tinuation path, it is necessary to have the phonon disper
law for eachl. The corresponding linearized version of Eq
~3! is given by

MQ̈n5l~qn22Qn1qn21!2~12l!Qn ,
~4!

mq̈n5l~Qn1122qn1Qn!2~12l!qn .

Substituting the linear wavesQn5Aexp@i(kn2vt)# and qn
5aexp@i(kn2vt)#, with kP@0,p# being the wave vector and
v the phonon frequency, into the linear equations of mot
~4!, one can find a phonon dispersion law. As a result,
frequencies of the acoustic and optical bands as function
the parameterl are given by

v2~k;l!5
11l

2 S 1

m
1

1

M D
7AF11l

2 S 1

m
2

1

M D G2

1
2l2~11cosk!

Mm
,

~5!

where the sign ‘‘2 ’’ ~‘‘ 1 ’’ ! stands for the acoustic~optical!
phonon band. We define the edges of these bands by

v1,4~l![v~0;l! and v2,3~l![v~p;l!, ~6!

being functions of the parameterl, where the subscripts
‘‘1,2’’ and ‘‘3,4’’ correspond to the signs ‘‘–’’ and ‘‘1.’’ Be-
sides these edges, we will also use a central gap freque
defined byv0

2[(v2
21v3

2)/2. On the whole interval 0<l
2-3
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<1, we have the inequalities 0<v1(l)<v2(l),v0
,v3(l)<v4(l). Next, we incorporate the notations for th
gap middle and the band edges atl51 according toV j
[v j ul51, with j 50,1,2,3, and 4. Then one can easily obta
from Eq. ~5! the following values:

v0
25

11l

2 S 1

m
1

1

M D , v2
25

11l

M
, v3

25
11l

m
, ~7!

V1
250, V2

252/M , V3
252/m, V4

252V0
2 ,

~8!
V0

25m211M 21,

which will be used throughout this paper.
The lower and upper edges of the acoustic and opt

bands are shown in Fig. 1 by solid lines for the ratio ma
M /m516. At l50, both the phonon bands merge into t
two single points: v1(0)5v2(0)5M 21/2 and v3(0)
5v4(0)5m21/2. Figure 1 also represents the three ad
tional zones obtained from the optical band by its division
2, 3, and 4. In order to avoid a resonance with the sec
harmonic, the breather frequency must lie outside the
zone bounded by the dashed lines that correspond to
lower and upper frequencies of the optical band divided b
Similarly, for the third harmonic, the frequency must lie ou
side the region bounded by the dotted lines that corresp
to the lower and upper edges of the optical band divided
3, whereas the dotted-dashed line represents the upper
of the optical band divided by 4~for the fourth harmonic!.
The fourth harmonic resonance region creates a thin z
lying very close to the acoustic phonon band from abo

FIG. 1. Acoustic and optical phonon bands~bounded with solid
lines!, including the optical band divided by 2~bounded with
dashed lines!, by 3 ~bounded with dotted lines!, and by 4~bounded
above with dotted-dashed line!, plotted~in dimensionless units! as
functions of the parameterl for the diatomic lattice with the mas
ratio M /m516. Due to the specific value of theM /m ratio, the
lower dotted-dashed line coincides with the upper edge of
acoustic band. Each of these quotient zones corresponds to bre
frequencies, for which the second, third, and fourth harmonics e
the optical band. The frequenciesV j ’s, j 51,2,3,4, are defined by
Eqs.~8!.
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which is forbidden for the breather frequency and, due to
specific mass ratioM /m516, the lower edge of the forbid
den zone coincides with the upper edge of the acoustic b
~see Fig. 1!. For each step in a continuation pathl5l(h), it
is essential for the gap frequencyv to lie outside the phonon
bands, including the submultiples of the optical band. Th
the frequency can lie within the gap between the optical a
acoustic bands as long as its higher harmonics do not r
nate with the phonons, or it can also be above the opt
band. These restrictions are essential for the numerical c
tinuation of a breather solution from the AC limit. There a
many ways to get a given frequency outside the phon
bands in the limitl→1, e.g., imposing in each step of th
continuation procedure a constant distance of this freque
from a band edge.

For the localized modes, we impose an exponential
crease of the oscillation’s amplitudes atn→6` given by the
exponential factor exp(2unu/L)[zunu, 0,z,1, whereL is a
localization length. Since the linear waves at the freque
gap edges~i.e., at k5p, where v5V2,3) become simply
standing waves with out-of-phase oscillations in the nei
boring lattice cells given byQn5(21)nA cos(vt) and qn
5(21)na cos(vt), one can assume for the DGBs the follow
ing asymptotics:

Qn5~21!nA6z unucos~vt !, ~9!

qn5~21!na6z unucos~vt !, ~10!

as n→6`. Here we have introduced the scaling consta
~amplitudes! A6 anda6, where the superscript ‘‘1 ’’ stands
for the right asymptotics (n→`) and ‘‘2 ’’ for the left ones
(n→2`). In general, the right and the left asymptotics a
different, depending where and how the breather is cente
Inserting the asymptotics~9! and ~10! into the linear equa-
tions of motion~4!, we get the set of four linear algebra
equations with respect to the constantsA6 and a6, from
which immediately one finds~at l51) the following two
relations:

a6

A6 5
z6121

mv222
5

Mv222

z7121
. ~11!

Here the last equality is the ‘‘dispersion law’’ for the ga
breathers with exponentially decaying profile. The soluti
of this equation that depends on the parameterz reads

v2~z!5
1

m
1

1

M
7AS 1

m
2

z

M D S 1

m
2

1

zM D , ~12!

where ‘‘2 ’’ ~‘‘ 1 ’’ ! stands for the lower~upper! branch of
the curvev5v(z), with V2<v<V0 (V0<v<V3), plot-
ted in Fig. 2. It is worthwhile to notice here that the impos
exponential behavior given by Eqs.~9! and ~10! is also an
approximation because the breather solutions of faster
crease are known at present@44#.

The solution~12! is valid for the localization lengths in
the interval@ ln(M/m)#21<L,`. Note also the following as-
ymptotics that follow from Eq.~12!:

e
ther
er
2-4
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Mv2521O@~12z!2# and mv2521O@~12z!2#,
~13!

at the lower and the upper gap edges, respectively. The
verse form of solution~12!, which can be represented as

z~v!512
1

2
~Mv222!~mv222!2

v

2

3A~Mv222!~mv222!@Mmv222~M1m!#,

~14!

wherevP@V2 ,V3#, will also be useful below for analytica
calculations.

IV. LOCAL ANHARMONICITY AND ROTATING
WAVE APPROXIMATIONS

The basic property of a breather solution is its spa
localization, so that only central particles in the localizati
region oscillate with large amplitudes, whereas the rest of
chain can be considered as linearly coupled small-amplit
oscillators. Therefore the first approximation to calculate
breather analytically is to neglect the anharmonic term in
interaction potential, except for the interaction of the cen
particles of the breather with its nearest neighbors. We
this approach, which is associated with the exponential
satz given by Eqs.~9! and ~10!, the LAA. As a second ap
proximation, we use for analytical calculations the w
known RWA. Since we deal with potential~2!, according to
RWA, for the central particles of a breather ansatz in
equations of motion~3!, we will make the approximate sub
stitution: cos3(vt)→(3/4)cos(vt).

The present section deals only with the original syste
whenl51. In the LAA approach, the system of the nonli
ear equations of motion@Eqs.~3! with l51] for the central
particles is completed by the exponentially decaying so

FIG. 2. Dependence of localization parameterz on frequencyv
given in dimensionless units and plotted according to Eq.~14!. In
this figure, the edges of the phonon bandsV150, V2

50.3536,V051.0308,V351.414, and V451.4577 are also
shown.
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tion, being an exact solution to the linear equations~4! and
given by Eqs.~9!–~11!, wherez is given by Eq.~14!. There-
fore below we will need to solve the nonlinear equations
the central particles of the breather centered either at a l
particle or at a heavy particle, with symmetric and antisy
metric profile~using RWA!, accompanying a resulting solu
tion in each case with the linear solution given by Eqs.~9!–
~11!.

The following four cases of breather symmetries are p
sible: the breather with symmetric or antisymmetric profile
centered either at a light particle or at a heavy particle.
call each of these patterns LS and HS~when the breather
with symmetricprofile is centered at alight and a heavy
particle, respectively! and LA and HA ~when the breather
with antisymmetricprofile is centered at alight and aheavy
particle, respectively!. Below we will consider each of thes
cases separately.

A. Light-particle symmetric mode: LS pattern

The LS mode describes the breather with symmetric p
file centered at a light particle, for instance, at the site w
n50. Then this particle can be assumed to oscillate w
some breather frequencyv and a certain amplitudea0, both
to be determined from the equations of motion for the cen
particle and its two adjacent heavy particles. The other li
particles are assumed to oscillate symmetrically with
same frequencyv, so that we suppose in Eq.~10! the sym-
metryq2n5qn for all n561,62, . . . . It follows then from
these conditions that in Eq.~10! one can puta25a1[a.
Using this symmetry property in Eqs.~11!, one finds from
Eq. ~9! the relationzA152A2[A that determines the sym
metry in oscillations of the heavy particles. As a result, t
LS breather ansatz can entirely be written as follows:

q05a0cos~vt !,

qn5~21!naz unucos~vt !, n561,62, . . . ,

Qn5~21!nAzn21cos~vt !, n51,2, . . . , ~15!

Qn5~21!n21Az2ncos~vt !, n50,21,22, . . . .

Schematically, the LS pattern can be represented by the
quence

$ . . . ;2z2A,z2a;zA,2za;2A,a0 ,2A;2za,zA;z2a,

2z2A; . . . %. ~16!

In this sequence, the semicolons separate symmetrically
‘‘central pattern cell’’ ~consisting of a light particle and its
two heavy neighbors! and the ‘‘lateral pattern cells’’~each
consisting of a light and a heavy particle, similarly to a u
cell in a diatomic chain!. Note that the amplitudes in eac
subsequent~more remote from the center! lateral pattern cell
are obtained from the amplitudes in the previous one
multiplying the latter ones by the factor2z.

Next, we assume in Eqs.~3! with l51, that only the
central particle~with the coordinateq0) oscillates with a
large amplitudea0. In other words, we suppose that the qua
2-5
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tic anharmonicity@in potential ~2!# exists only in the cou-
pling between the central particles and its adjacent left
right heavy particles withQ0 and Q1 ~using the LAA ap-
proach!. The equations of motion for the central partic
~situated at the site withn50) and one of its lateral heav
particles, e.g.,Q0 @due to the pattern symmetry,Q05Q15
2A cos(vt) andq215q152za cos(vt)], can be written us-
ing RWA as

~mv222!a022A2~3/2!b~a01A!350,
~17!

~Mv222!A2a01za2~3/4!b~a01A!350.

The last two equations together with the pair of Eqs.~11!
specified for the LS case as

a

A
5

12z21

mv222
5

Mv222

12z
~18!

determine the four parameters: the amplitude of the cen
light particlea0, the ‘‘amplitude scalings’’ in the heavy an
light sublatticesA and a, respectively, and the localizatio
factor z, as functions of the breather frequencyv from the
gap intervalV2,v,V3.

In order to treat the breather solution to Eqs.~17! and~18!
analytically, we may assume that only the central light p
ticle oscillates with large amplitude, whereas the amplitu
of the lateral heavy particles are small, so that they can
linearized. As a result, from Eqs.~17! and ~18! one finds
approximately the solution for the amplitude of the cent
light particlea0 in the form

a0
25

2~11z!

3bzF11z

12z
2S M

12z
1

3

2
mDv2G ~19!

and the relation between the amplitudes of the heavy
ticles and that of the central one:

A

a0
5

mv22223ba0
2/2

219ba0
2/2

. ~20!

The expression in the square brackets of Eq.~19! appears
to benegativefor all the gap frequenciesvP@V2 ,V3# given
by Eqs.~8!. This means that the LS pattern can exist only
b,0 ~soft anharmonicity!. Thus, the analytical solution fo
the LS mode as a function of the gap frequencyv is given by
Eqs.~18!–~20!. More precisely, Eq.~19! determines uniquely
the functiona05a0(v), and inserting next this function into
Eq. ~20!, one finds the amplitudeA5A(v). Finally, using
the functionA(v) in any of the two equations~18!, the third
amplitudea5a(v) is easily obtained. Furthermore, all th
three amplitudesa0 , A, anda as functions of frequencyv
appear to be well defined on the whole intervalV2,v
,V3.

Using the asymptotics~13!, one can find from Eqs.~18!–
~20! the asymptotic behavior of the amplitudesa0 , A, anda,
as z→1 ~i.e., when the localization lengthL→`), ap-
proaching both the phonon bands. As a result, we obtain
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A

a0
→ m

M
,

a

a0
→ ~12z!m

2~M2m!
with a0→2A 2M

3b~M13m!
,

~21!

asz→1 at the lower gap edge (v→V2), and

A

a0
→ ~12z!m

2~M2m!
,

a

a0
→1 with a0→A 2~12z!m

3b~m2M !
,

~22!

as z→1 at the upper gap edge (v→V3). The LS solution
given by Eqs.~18!–~20! is also simplified at the frequenc
v5V0 @see Eqs.~8!#, wherez5m/M . As a result, the LS
solution at this frequency is given by the pattern~16!, with

a0
2524M /3b~2M13m!, A5ma0/2M , a5a0/2.

~23!

Finally, from the comparison of the asymptotic behav
of the breather solution given by Eqs.~21! and ~22! as z
→1 at the lower and upper gap edges, we find that the
breather mode bifurcates from theoptical band. Indeed, the
lower edge of the optical phonon band corresponds to
standing linear waves when the heavy particles are at
and the light particles oscillate out of phase with the sa
amplitude. This phonon mode is obtained in the limitz→1
from Eqs.~22!, where the amplitudeA tends to zero faste
than the amplitudea, and in the meantime,a0→a. In other
words, the local ~impuritylike! negative anharmonicity
causes the localization of the out-of-phase oscillations of
light particles, which in its turn results in the appearance
the localized out-of-phase oscillations of the heavy partic
of the diatomic chain. Mathematically, in pattern~16!, for all
the frequencies from the gap intervalV2,v,V3, we have
the inequalities:A.0 anda.0 if a0.0. In spite of the LS
breather solution, which is given by Eqs.~14!–~16! and
~18!–~20!, being obtained by using two approximation
~LAA and RWA!, it appears to be in a good agreement w
the numerically exact solution obtained below from the A
limit when solving the equations of motion~3!. The compari-
son of these solutions is demonstrated by Fig. 3 for t
values of the breather frequencyv. As intuitively expected,
the local anharmonicity approximation should ‘‘localize’’
litle bit the influence of anharmonicity, making it effectivel
stronger. This is why the amplitudesQn’s andqn’s obtained
within this approximation appear o be a bit higher than
corresponding exact values.

B. Heavy-particle symmetric mode: HS pattern

In the case of the HS mode, the breather is centered
heavy ion, e.g., at the site withn50, so thatQ0 is supposed
to perform large-amplitude oscillations with frequencyv
from the gap. The rest of the heavy particles of the chain
assumed to oscillate symmetrically with the same frequen
Q2n5Qn for all n561,62, . . . . Therefore we impose in
Eq. ~9! that A25A1[A, and using this property as well a
Eq. ~10!, one finds from Eqs.~11! the relationa152za2

[a. Let A0 be the amplitude of oscillations of the centr
2-6
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heavy particle. Then, Eqs.~9! and ~10! are reduced to the
following ansatz for the HS pattern:

Q05A0cos~vt !,

Qn5~21!nAz unucos~vt !, n561,62, . . . ,
~24!

qn5~21!nazncos~vt !, n50,1, . . . ,

qn5~21!n11az2(n11)cos~vt !, n521,22, . . . ,

which schematically can be represented in the sequence
as

$ . . . ;z2a,z2A;2za,2zA;a,A0 ,a;2zA,

2za;z2A,z2a; . . . %, ~25!

where the semicolons separate symmetrically the central
the lateral pattern cells in a similar manner as in the pat
sequence~16!.

It follows from the comparison of the patterns~16! and
~25! that all the analytical results for the HS mode can
rectly be obtained from the preceding subsection by the s
stitution a0→A0 , A→2a, a→A, M↔m in the LS solu-
tion ~18!–~20!. As a result, instead of Eqs.~17! and~18!, one
obtains the system

~Mv222!A012a2~3/2!b~A02a!350, ~26!

~mv222!a1A02zA1~3/4!b~A02a!350, ~27!

FIG. 3. The LS pattern obtained both analytically and nume
cally for soft interaction~2! with b521 and mass ratioM /m
516, and plotted in dimensionless units for two breather freque
values (v50.74 andv51.40). For frequencyv51.40, the ampli-
tudesQn’s (qn’s! calculated numerically from the anticontinuou
limit @solving the equations of motion~3!# are shown by big~small!
squares connected with solid lines, whereas for frequencyv
50.74, these are shown by circles connected with dashed li
Accordingly, the analytical solution given by Eqs.~14!–~16! and
~18!–~20! is represented by diamonds (v51.40) and stars (v
50.74) connected with dotted lines.
04661
rm

nd
rn

-
b-

A

a
5

z2121

Mv222
5

mv222

z21
. ~28!

Similarly, linearizing Eqs.~26! and ~27! with respect toa,
one finds from Eqs.~26!–~28! the following relations:

A0
25

2~11z!

3bzF11z

12z
2S m

12z
1

3

2
M Dv2G , ~29!

a

A0
52

Mv22223bA0
2/2

219bA0
2/2

. ~30!

The HS mode is expected to bifurcate from theacoustic
phonon band, when the light particles are at rest and
heavy particles oscillate out of phase. Similarly, as for the
mode, one finds the asymptotics

a

A0
→ ~12z!M

2~M2m!
,

A

A0
→1 with A0→A 2~12z!M

3b~M2m!
,

~31!

as z→1 at the lower gap edgeV2 @compare Eqs.~22! and
~31!#. It follows from the asymptotic behavior for the ampl
tudeA0 asz→1 thatb must bepositive~hard anharmonic-
ity!. However, contrary to the LS case@see Eq.~19!#, the
expression in the square brackets of Eq.~29! retains its~posi-
tive! sign only nearby the lower branch of curve~12!. There-
fore the HS breather solution, for whicha.0 andA.0 if
A0.0, exists only if it is not strongly localized, in som
interval V2,v,vc,hs, where the critical frequencyvc,hs is
defined from zero equality of the denominator in the rig
hand side of Eq.~29!. Thus, in the case ofb51, M516,
andm51, we havevc,hs50.3692. In fact, as calculated be
low exactly from the AC limit, the HS pattern exists fo
higher frequencies, e.g., forv50.38 andv50.45, as illus-
trated by Fig. 4. The reason of this discrepancy is the sam
above decribed for the LS pattern: due to the effect
strengthening of anharmonicity, the interval of availab
breather frequenciesv determined approximately by Eq
~29! becomes a bit narrower and, as a result, both the
quenciesv50.38 andv50.45 appear outside this~approxi-
mate! interval.

C. Light-particle antisymmetric mode: LA pattern

For the LA mode, a light particle~situated, e.g., at the sit
n50) is fixed (q0[0), whereas the rest of the light particle
of the chain are allowed to oscillate antisymmetrically:q2n
52qn for all n561,62, . . . . Therefore one may put in
Eq. ~10! that a252a1[a. Using then Eqs.~9! and ~11!,
one finds thatA152A/z with 2A2[A. Next, we assume
that the two central heavy particles perform out-of-pha
large-amplitude oscillations:Q052Q1. More precisely, the
LA ansatz can be written as follows:

q0[0, Q052Q15A0cos~vt !,

-

y

s.
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MANIADIS, ZOLOTARYUK, AND TSIRONIS PHYSICAL REVIEW E 67, 046612 ~2003!
qn57~21!naz unucos~vt !, n561,62, . . . ,

Qn5~21!n21Azn21cos~vt !,n52,3, . . . , ~32!

Qn5~21!n21Az2ncos~vt !, n521,22, . . . .

Schematically, this ansatz can be represented as the seq

$ . . . ;z3a,z2A;2z2a,2zA;za,A0 ,0,2A0 ,2za;zA,z2a;

2z2A,2z3a; . . . %. ~33!

In this sequence, the semicolons separate the central~anti-
symmetric! pattern cell~consisting of a standing central ligh
particle and its four lateral neighbors! and the lateral pattern
cells ~each consisting of a light and a heavy particle!. Here
the separation by semicolons has been arranged in a sim
way as for the symmetric patterns, so that the amplitude
each subsequent~more remote from the center! pattern cell
are obtained from the amplitudes in the previous one
multiplying the latter ones by the factor2z. Contrary to
sequences~16! and ~25!, where the left and the righ
‘‘wings’’ of the LS and the HS patterns oscillate symmet
cally, here all the particles from the right and from the left
the central standing particle oscillate antisymmetrically.

Similarly to the symmetric modes studied in the previo
two subsections, the approximate equations of motion for
two adjacent~heavy and light! particles@for the variablesQ1
and ~linearized! q1] take the form

MQ̈15q122Q11bQ1
2~3q122Q1!,

~34!

mq̈15Q122q11Q21bQ1
2~Q123q1!.

FIG. 4. The HS pattern as an exact breather solution of
equations of motion~3! for hard interaction~2! with b51 and mass
ratio M /m516, obtained from the anticontinuous limit. Small
~bigger! circles or squares correspond to light~heavy! particles. The
amplitudesQn’s andqn’s for breather frequenciesv50.38 ~shown
by circles connected with solid lines! and v50.45 ~shown by
squares connected with dashed lines! are plotted in dimensionles
units.
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The last two equations together with the pair of Eqs.~11!
rewritten as

a

A
5

12z21

mv222
5

Mv222

12z
~35!

determine the four parametersA0 , a, A, andz as functions of
the phonon gap frequencyv. Using RWA @in Eqs. ~34# as
well as Eqs.~35!, we get the quadratic equation

b2A0
41

8

9
PbA0

22
16

27z
50 ~36!

with respect tobA0
2, where

P[
32z

12z
2S m

12z
1

3

2
M Dv2. ~37!

It is also found that the amplitude ratio is

a

A0
52

Mv22223bA0
2/2

z~119bA0
2/4!

. ~38!

Since at the upper edge of the acoustic band all the he
particles oscillate out of phase and the light particles are
rest, the LA mode~for which all the heavy particles hav
been assumed above to perform out-of-phase oscillatio!
bifurcates from thelower edge of the phonon gap. At th
beginning of curve~12!, where z→1 and thereforeP
→2(M2m)/(12z)M→`, being positive, we find from
Eq. ~36! thatbA0

2 must bepositive, near this edge. Therefor
the LA mode can exist only ifb.0 ~hard anharmonicity!.
More precisely, we find the following asymptotics:

a

A0
→ ~12z!M

2~M2m!
,

A

A0
→1 with A0→A ~12z!M

3b~M2m!
,

~39!

as z→1, approaching the lower gap edge. As follows fro
these asymptotics and sequence~33!, asv→V2, the ampli-
tudes of the out-of-phase oscillations of the heavy partic
are ‘‘equalized’’ (A0→A), while the amplitude of the light
particles a tends to zero faster than the amplitude of t
heavy particlesA. The LA solution given by Eqs.~35!–~37!
is essentially simplified atv5V0 @see Eqs.~8!#, where z
5m/M . Indeed, the~positive! solution of Eq. ~36! is A0

2

54M /3bm and then from Eqs.~35! and ~38! we obtaina
5M (M1m)A0 /m(3M1m) and A5(M1m)A0 /(3M
1m).

As regards the behavior of the amplitudesA0 , a, andA
on the whole frequency intervalV2,v,V3, we conclude
immediately from Eqs.~35! that the signs ofA anda are the
same everywhere in this interval. The amplitude of the c
tral particlesA0 is given by the solution of the quadrati
equation~36! with respect tobA0

2, which must be positive:

bA0
252

4

9
P~7A113/zP2!, ~40!

e

2-8
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where the sign ‘‘2 ’’ stands forP.0 and ‘‘1 ’’ for P,0, and
bA0

254/3A3z if P50. The solution~40! monotonically in-
creases from zero to a finite value, while running along cu
~12!, starting at the lower gap edge and ending at the up
one, and being positive everywhere. Using solution~40!, first
in Eq. ~38! and then in any of Eqs.~35!, we find the other
amplitudesa and A. Therefore, the LA breather solution
shown to exist for all gap frequencies and no sign chan
occur within the whole gap interval:a.0 andA.0 if A0
.0. For two breather frequencies, the approximate
breather solution@given by the four equations~35!–~38! to-
gether with Eqs.~14! and~32! or ~33!# is compared in Fig. 5
with the corresponding numerically exact solution obtain
below from the AC limit by solving the equations of motio
~3!. In this case, the approximate solution is not so close
the exact solution as in the case of the LS pattern~compare
with Fig. 3!, but their qualitative agreement is still satisfa
tory. Note that the results obtained here for the LA mo
agree ~also qualitatively! with those found previously by
Chubykalo and Kivshar@15#.

D. Heavy-particle antisymmetric mode: HA pattern

For the HA pattern, a heavy particle of the chain is a
sumed to be fixed~e.g., at the site withn50, so thatQ0
[0) and the rest of the heavy particles are imposed to
cillate antisymmetrically, i.e., in Eq.~9! we assume tha
Q2n52Qn . Then we may putA152A2[A. Using next
Eq. ~10!, from Eqs.~11! we geta25a/z, a[a1. Finally,
we also impose the antisymmetry property for the lar
amplitude oscillations of the two central light particles, a
suming thatq052q21. Summarizing these assumption
Eqs.~9! and ~10! can be written as the following ansatz:

Q0[0, q2152q05a0cos~vt !,

Qn56~21!nAz unucos~vt !, n561,62, . . . ,
~41!

qn5~21!nazncos~vt !, n51,2, . . . ,

qn5~21!naz2(n11)cos~vt !, n522,23, . . . .

Schematically, this ansatz is represented by the sequenc

$ . . . ;2z3A,z2a;z2A,2za;2zA,a0 ,0,2a0 ,zA;za,2z2A;

2z2a,z3A; . . . %, ~42!

where the separation with semicolons has been arran
similarly to the LA sequence~33!.

One can conclude from the comparison of the sequen
~33! and~42! that all the results for the HA mode can direct
be obtained from the preceding subsection by the subs
tion A0→a0 , a→2A, A→a, and m↔M in the LA solu-
tion given by Eqs.~35!–~38!. As a result, the correspondin
relations take the form

A

a
5

z2121

Mv222
5

mv222

z21
, ~43!
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b2a0
41

8

9
pba0

22
16

27z
50, ~44!

A

a0
5

mv22223ba0
2/2

z~119ba0
2/4!

, ~45!

wherep is defined by

p[
32z

12z
2S M

12z
1

3

2
mDv2. ~46!

According to ansatz~41!, all the light particles of the
chain are supposed to perform out-of-phase oscillatio
Since at the lower edge of the optical band, all the lig
particles oscillate out of phase and all the heavy particles
standing, the HA breather bifurcates from theupperedge of
the phonon gap. At the beginning of the upper branch
curve ~12! ~as z→1), p→2(m2M )/(12z)m→2` @see
Eq. ~46!#, being negative. Then, as follows from Eq.~44!,
ba0

2 must tend to zero, beingnegative. Therefore the anhar
monicity must besoft (b,0). More precisely, we find from
Eqs.~43!–~46! the following asymptotics:

A

a0
→ ~12z!m

2~M2m!
,

a

a0
→1 with a0→A ~12z!m

3b~m2M !
,

~47!

as z→1 along the upper branch of curve~12!. Since 2/M
,v2,2/m, it follows from Eqs.~43! that the signs of the
amplitudesA anda are the same. Therefore in the vicinity o

FIG. 5. The LA pattern obtained both analytically and nume
cally for hard interaction~2! with b51 and mass ratioM /m516,
and plotted in dimensionless units for two breather frequenciesv
50.51 andv50.63). For frequencyv50.51, the amplitudesQn’s
(qn’s! calculated numerically from the anticontinuous limit@solving
the equations of motion~3!# are shown by big~small! circles con-
nected with solid lines, whereas for frequencyv50.63, these are
shown by squares connected with dashed lines. Accordingly,
analytical solution given by Eqs.~14!, ~32!, ~33!, ~35!–~38! is rep-
resented by diamonds (v50.51) and stars (v50.63) connected
with dotted lines.
2-9
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the upper gap edge, we have the inequalitiesA.0 and a
.0 if a0.0; in fact, they can be continued on the who
curve ~12!. Indeed, the solution of the quadratic equati
~44! for the soft anharmonicity (b,0) is given by

ba0
252

4

9
p~16A113/zp2!, ~48!

where the sign ‘‘1 ’’ stands forp.0 and ‘‘2 ’’ for p,0, and
ba0

2524/3A3z if p50. The solution~48! monotonically
increases~in modulus! from zero to a finite value, while
running along curve~12!, starting at the upper gap edge a
ending at the lower one. Similarly to the LS pattern, t
approximate solution given by Eqs.~41!–~46! together with
relation~14! is found to be in the same good agreement w
the numerically exact solution obtained below from the A
limit and this is illustrated by Fig. 6.

V. EXACT NUMERICS

So far, to treat the gap breather solutions in the diato
chain, we have used the two approximations~LAA and
RWA!, and therefore we were able to get the analytical
lutions for all possible symmetries in a very simple form.
this section, we will treat rigorously these breather solutio
omitting both these approximations, and study their stabi
using the Floquet analysis. In other words, using the
proach based on the idea of the AC limit, we will calcula
numerically the gap breather solutions of the original co
plete equations of motion~3!. To this end, we choose som
initial condition, starting withl50, solve these equation

FIG. 6. The HA pattern obtained both analytically and nume
cally for soft interaction~2! with b521 and mass ratioM /m
516, and plotted in dimensionless units for two breather frequ
cies (v50.74 andv51.40). For frequencyv51.40, the ampli-
tudesQn’s (qn’s! calculated numerically from the anticontinuou
limit @solving the equations of motion~3!# are shown by big~small!
circles connected with solid lines, whereas for frequencyv
50.74, these are shown by squares connected with dashed
Accordingly, the analytical solution given by Eqs.~14! and ~41!–
~46! is represented by diamonds (v51.40) and stars (v50.74)
connected with dotted lines.
04661
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numerically using the Newton method, and then contin
this procedure up to the valuel51. The continuation mus
proceed in a path@on the (l,v) plane#, which avoids all the
resonances of the breather frequency and its higher harm
ics with the phonon bands.

More precisely, for the numerical construction of DBs a

the investigation of their stability, we define a vectorXW

5$Q1 ,q1 ,•••,QN ,qN ;Q̇1 ,q̇1 ,•••,Q̇N ,q̇N%†, which con-
tains the position and the velocity of every particle in t
lattice ~for the numerical calculation we assume a finite l
tice with N unit cells!. We also define the nonlinear mapT
that corresponds to the time evolution of the vectorXW for one

breather periodtB . A breather solutionXW B will correspond to

a fixed point of this map@XW B(t5tB)5T„XW B(t50)…#. As-

suming then that we know a vectorXW , which is close to the

breather solution to be found (XW B5XW 1DW , whereDW is a vec-
tor with small magnitude! and substituting it into the previ
ous equation, it is possible to calculate a numerically ex

breather solution by solving the equation (M2I )•DW 5XW

2T(XW ), whereM is the tangent map ofT or the Floquet
matrix of the system andI is the unit matrix. This equation
can be solved either by minimization or using the singu
value decomposition. The Floquet matrix can be calcula
numerically, integrating the linearized equations of moti
for a small perturbationeW over one breather periodtB , eW (t
5tB)5M•eW (t50). The linear stability of the breather solu
tion depends on the eigenvalues of the Floquet matrix; if o
or more eigenvalues have magnitude larger than 1, the
small perturbation of the solution will grow exponentially
time and the solution will be linearly unstable. Since t
Floquet matrix is symplectic~if r is an eigenvalue, then 1/r,
r* , and 1/r* are also eigenvalues!, a breather is stable only
if all the eigenvalues of the Floquet matrix lie on the un
circle ~in the complex plane!. A linearly unstable breather in
a real system will be destroyed in short time due to the
teractions with the environment, while a stable breather
be created spontaneously during energy relaxation, an
soon as it is created, it will have a very long lifetime. Mo
information related to the Newton method and the stabi
analysis can be found in Refs.@34–36#.

The continuation from the AC limit (l→0) is performed
in the path@in the (l,v) space#, which avoids all the reso-
nances of the breather frequency or its higher harmonics w
the optical phonon band. For each step, we increasel by a
small quantityDl and then calculate the phonon frequenc
from Eq. ~5!. If there is a resonance, we modify the breath
frequency by a small quantity, in order to avoid the res
nance. Then, for these specific values ofl andv, we calcu-
late numerically the exact breather profile, using the stand
Newton-Raphson method. For the next step, we increasl
and proceed in the same way. Below we present the resul
these numerical calculations for all the four~LS, HS, LA,
HA! patterns.

Thus, for thesoft interaction potential@with b521 in
Eq. ~2!#, both the symmetric and antisymmetric modes c
be found. For the symmetric mode with a light particle at t
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center~LS pattern!, the initial condition for the AC limit is
chosen in the way when all the light and heavy particles
the chain are assumed to be at rest, except for one of the
particles, oscillating with some frequencyv within the gap.
For the antisymmetric mode with a heavy particle fixed~HA
pattern!, the initial condition is chosen in the way, when a
the particles are supposed to stay at rest, except for
neighboring~in the light sublattice! particles, oscillating out
of phase with some frequency within the gap. This mode
multibreather with a heavy particle at rest~in the center of
the multibreather! and with its nearest-neighbor light pa
ticles, oscillating out of phase.

Using the Newton method, both the LS and HA mod
can be found from the AC limit for all the gap frequenci
(V2,v,V3). Note, when the particle masses arem51
and M516, we have the following values for the edges
the phonon bands:V150 ~the lower edge of the acousti
band!, V250.3536 ~the upper edge of the acoustic band!,
V351.4142 ~the lower edge of the optical band!, and V4
51.4577~the upper edge of the optical band!. In Fig. 3, the
amplitudesQn’s andqn’s of the LS pattern are plotted for th
two different frequencies, one of which is situated close
the optical band from below, while for the other frequen
the second harmonic appears to be close to the optical b
but from above. The Floquet stability analysis@see Fig. 7
with eigenvalues plotted there# shows that the LS mode i
stable for frequencies sufficiently close to theoptical band
from below, andunstablewhen one of the harmonics appea
sufficiently close to theoptical band, butaboveit. The pair
of Floquet eigenvalues merge into 1 on the unit circle as
frequency decreases~within the gap!, beginning from the
upper gap edgeV3, and for a certain value, the eigenvalu
collide at 1 and escape on the real axis, making the LS m
unstable. More precisely, for the mass ratioM /m516, there
exists a critical frequency, at which the breather changes
stability. The collision of the Floquet eigenvalues on the u
circle occurs at the critical frequencyvc,ls50.9627: for
breather frequencies higher than this critical value, the
breather is stable, while for frequencies lower than the c

FIG. 7. Stability analysis of the breather solutions for the
pattern. Circles and squares correspond to frequenciesv51.40 and
v50.74, respectively.
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cal frequency, the LS breather is unstable. The critical vel
ity vc,ls is very close to the minimum of the curvez(v)
shown in Fig. 2.

Figure 4 represents the HS pattern for two different f
quencies. The first frequency lies in the gap close to
acoustic band, whereas the second one has its third
monic, also lying in the gap, but close to the optical ban
The Floquet stability analysis shows that the HS mode
unstable for each frequency within the gap. In fact, as de
onstrated analytically in Sec. IV B, the interval of admissib
frequencies for the HS solution isV2,v,vc,hs,V0, where
vc,hs is a critical value. As follows from the expression in th
square brackets of Eq.~29!, this frequency interval increase
with decreasing the mass ratioM /m. Since this ratio has an
integer square root equal to 4, when the frequency belong
a thin region close to the acoustic band from above,
fourth harmonic resonates with the optical band. To av
this resonance, we studied the case with a smaller mass r
namely, M /m52.5. For this case, when the breather fr
quency is in the gap, all its harmonics are situated above
optical band, and therefore we avoid the resonances.
stability analysis for this mass ratio shows that the breathe
stable only when its frequency is sufficiently close to th
acousticband. For larger frequencies, the breather becom
unstable. The critical frequency, at which the instability oc
curs, is v50.9492, while the upper edge of the acous
band corresponds to frequency 0.8944, so that the width
the frequency interval, where the HS breathers are stabl~if
M /m52.5), is 0.0548.

Figure 5 represents the LA pattern also for two differe
frequencies and the same massesM516 andm51. In gen-
eral, for any mass ratioM /m.1, it can be found that the LA
mode isstable if its frequency is sufficiently close to the
acousticband or one of its harmonics appears to lie close
theoptical band beingaboveit, andunstableif the frequency
or one of its harmonics is sufficiently close to theoptical
band, butbelow it. Thus, for the mass ratioM /m52.5, the
stability analysis shows that there exists a critical freque
within the gap, namely,v51.1, such that for all the gap
frequencies larger than this value, the LA mode is unsta
whereas for all the frequencies less than this value, this m
is stable.

Figure 6 represents the HA pattern for the same frequ
cies as for the LS mode. This mode appears to beunstable
for all the gap frequencies: the number of the Floquet eig
values that lie outside the unit circle exceeds 1. The symm
ric and antisymmetric modes can also be found for poten
~2! with hardanharmonicity, using in the same way the Ne
ton method and the AC limit. Similarly, in this case, th
symmetric mode~HS pattern! is centered on a heavy particle
The initial condition for the AC limit for this mode is chose
as follows: all the light and heavy particles are supposed
be at rest, except for one heavy particle, oscillating w
some frequency within the gap. For the antisymmetric mo
with a light particle fixed~LA pattern!, the initial condition is
chosen in the similar manner: all the particles of chain are
rest, except for two nearest-neighbor particles in the he
sublattice, oscillating out of phase with some frequen
within the gap.
2-11



and
tic band
band

gap

MANIADIS, ZOLOTARYUK, AND TSIRONIS PHYSICAL REVIEW E 67, 046612 ~2003!
TABLE I. Existence and stability results obtained by different techniques for all the four discrete gap breather modes.

Mode Anharmonicity Bifurcation Analytically Numerically Stability
in the gap from approximate exact

LS Soft Optical band Within the whole gap Within the whole gap Stable near the optical b
HS Hard Acoustic band Close to the acoustic band Close to the acoustic band Stable near the acous
LA Hard Acoustic band Within the whole gap Close to the acoustic band Stable near the acoustic
HA Soft Optical band Within the whole gap Within the whole gap Unstable within the whole
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VI. SUMMARY

We have examined the existence and stability of disc
breathers in an isolated diatomic chain of alternating mas
coupled through potential~2! with quartic ~soft or hard! an-
harmonicity. This chain is also called the diatomicb-FPU
chain. The study has been performed both analytically
numerically, and restricted to the breather solutions with f
quency within the gap between the acoustic and optical p
non bands. The analytical investigation has been imp
mented, using the two approaches: LAA and RWA. T
exact breather solutions have been obtained numerically
ing the AC limit. In order to apply the AC limit, the standar
equations of motion for the nonlinear diatomic chain ha
been rewritten in terms of the parameterlP@0,1#, in such a
way @see Eqs.~3!# that atl50 the chain becomes a syste
of decoupled nonlinear oscillators, while in the limitl→1,
this decoupling is gradually removed, restoring the origi
~realistic! form of the chain.

For localized solutions, the LAA approach is motivat
by the fact that, except for one, two, or several partic
located in the center of a breather, the rest of the chain ca
considered as a system of linear oscillators, admitting
exact solution with exponential behavior. The second
proximation~RWA! allows us to solve analytically the non
linear equations of motion for the central particles~where the
breather is supposed to be localized! and represent the solu
tion in simple terms. This representation is important fro
the point of view of the analysis of the existence of all po
sible types of breather solutions with given soft or hard
harmonicity in potential~2!. Thus, using the structure of th
phonon modes at the upper edge of the acoustic band~light
masses are at rest, while heavy masses oscillate out of ph!
and the lower edge of the optical band~heavy masses are a
rest, while light masses oscillate out of phase!, we are able to
derive the four ansa¨tze that correspond to all possible sym
metries of the breather patterns, with Sievers-Takeno-
symmetric @3# and Page-like antisymmetric@4# profiles in
each~light and heavy! sublattice. As a result, we have ob
tainedsimple algebraicexpressions in terms of a finite num
ber of amplitude parameters. The minimal number of th
amplitudes for any type of breather solutions, LS, HS, LA,
HA is three: a0 or A0 , a, and A. These three amplitude
together with the parameterz satisfy in each case the syste
of four algebraic equations: Eqs.~18!–~20! for the LS mode,
Eqs.~28!–~30! for the HS mode, Eqs.~35!–~38! for the LA
mode, and Eqs.~43!–~46! for the HA mode. As illustrated in
Figs. 3, 5, and 6, the agreement of theseanalytically approxi-
matebreather solutions with the correspondingnumerically
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exactsolutions found from the AC limit by solving the equa
tions of motion~3! appears to be relatively good. Here th
analytical values for the amplitudesQn’s andqn’s are higher
than their corresponding exact values. This is because
local anharmonicity approximation effectively strengthe
the influence of anharmonicity, making it effectively strong
and resulting in strengthening the localization.

In each case~soft or hard anharmonicity!, two, instead of
four, breather solutions have been shown to exist~analyti-
cally and confirmed numerically!: LS and HA for soft anhar-
monicity, and HS and LA for hard anharmonicity. Three
these modes~LS, LA, and HA! exist for any frequency in the
gap, while the HS mode can exist only near the lower g
edge. All these results are qualitatively summarized in Ta
I. Since the hydrogen bonding has asoft anharmonicity, it
follows from this table that only the LS pattern is approp
ate. This pattern describes the infrared shift of vibratio
spectra observed in numerous experiments.

As follows from the breather solutions plotted in Fig
3–6, in each pattern cell@in the sequences~16!, ~25!, ~33!,
and ~42!, the pattern cells are separated with semicolons# of
the LS and HA modes, thelight andheavyparticles oscillate
being displaced inoppositedirections, whereas these dis
placements occur in thesamedirections for the HS and LA
breathers. This different dynamical behavior is because
inertia in high-frequency oscillating motion: it is easier for
light particle to follow a heavy one than vice versa.

The Floquet stability analysis of all these patterns h
shown that when we avoid the nonresonance condition, o
the HA mode is unstable for all the gap frequencies. T
instability comes from the fact that the HA mode is a mul
breather, centered at a heavy particle at rest, with its nea
neighbor light particles oscillating out of phase. In physic
terms, the stability of the LA mode can be understood wh
its profile is compared with the stable Page mode@4# for a
monoatomic chain: light masses are easily drawn into
oscillating motion and they do not perturb strongly the m
tion of heavy masses.
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